ar X iv : m at h - ph / 0 40 10 11 v 1 7 J an 2 00 4 Applications and generalizations of Fisher - Hartwig asymptotics

نویسندگان

  • P. J. Forrester
  • N. E. Frankel
چکیده

Fisher-Hartwig asymptotics refers to the large n form of a class of Toeplitz determinants with singular generating functions. This class of Toeplitz determinants occurs in the study of the spin-spin correlations for the two-dimensional Ising model, and the ground state density matrix of the impenetrable Bose gas, amongst other problems in mathematical physics. We give a new application of the original Fisher-Hartwig formula to the asymptotic decay of the Ising correlations above T c , while the study of the Bose gas density matrix leads us to generalize the Fisher-Hartwig formula to the asymptotic form of random matrix averages over the classical groups and the Gaussian and Laguerre unitary matrix ensembles. Another viewpoint of our generalizations is that they extend to Hankel determinants the Fisher-Hartwig asymptotic form known for Toeplitz determinants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 40 60 11 v 1 4 J un 2 00 4 PATH INTEGRALS FOR PARASTATISTICS

We demonstrate that parastatistics can be quantized using path integrals by calculating the generating functionals for time-ordered products of both free and interacting parabose and parafermi fields in terms of path integrals.

متن کامل

ar X iv : m at h - ph / 0 40 60 28 v 2 3 A ug 2 00 5 ETA INVARIANTS WITH SPECTRAL BOUNDARY CONDITIONS

We study the asymptotics of the heat trace Tr{fPe 2 } where P is an operator of Dirac type, where f is an auxiliary smooth smearing function which is used to localize the problem, and where we impose spectral boundary conditions. Using functorial techniques and special case calculations, the boundary part of the leading coefficients in the asymptotic expansion is found.

متن کامل

ar X iv : 0 70 7 . 11 47 v 1 [ m at h - ph ] 8 J ul 2 00 7 Uncertainty principle with quantum Fisher information ∗

In this paper we prove a nontrivial lower bound for the determinant of the covariance matrix of quantum mechanical observables, which was conjectured by Gibilisco and Isola. The lower bound is given in terms of the commutator of the state and the observables and their scalar product, which is generated by an arbitrary symmetric operator monotone function. Introduction The basic object in the st...

متن کامل

ar X iv : m at h - ph / 0 40 40 26 v 1 8 A pr 2 00 4 THE DE RHAM - HODGE - SKRYPNIK THEORY OF DELSARTE TRANSMUTATION OPERATORS IN MULTIDIMENSION AND ITS APPLICATIONS

Spectral properties od Delsarte transmutation operators are studied , their differential geometrical and topological structure in multidimension is analyzed, the relationships with De Rham-Hodge-Skrypnik theory of generalized differential complexes is stated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004